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Abstract— We analyze the performance of a joint timing
epoch tracking and PSAM-based channel estimation system in
a frequency-flat Rayleigh fading MIMO channel. The receiver
tracks a random timing drift via a timing error detector
developed for nT = 2 orthogonal space-time block coded M-
PSK systems with an arbitrary number of receive antennas. The
detector’s S-curve has recently been shown to be independent of
the channel state, resulting in system very robust in poor channel
conditions. We evaluate the receiver’s tracking capabilities in
conjunction with channel estimation and study the effects of the
delay inherent to PSAM interpolation systems. Symbol error rate
performance for a QPSK system is presented, with the results
showing negligible performance degrad

I. INTRODUCTION

The emergence of multiple input multiple output (MIMO)
systems has allowed for an increase in the data rate and the ca-
pacity of wireless links. In particular, the theory of orthogonal
space time block coding (OSTBC) has received a lot of atten-
tion since its development [1]–[3], due to its ability to provide
maximum diversity in fading environments while maintaining
low decoding complexity. As in conventional, single-antenna
synchronous communications, the receiver’s ability to estimate
reference parameters, including timing epoch and the channel
fading, is critical to the overall performance of MIMO systems.

Rapid channel fading, which characterizes mobile commu-
nications channels, must be accurately estimated and compen-
sated for in order to achieve high quality coherent communica-
tions. Consequently, a considerable amount of effort has been
invested in developing effective channel estimation techniques.
One particularly popular approach has been Pilot Symbol
Assisted Modulation (PSAM), developed by Sampei et al. [4]
and Moher et al. [5]. In a PSAM-based system, known training
symbols are periodically inserted into the data stream and the
information extracted from them at the receiver is used to
derive the channel state via interpolation. Analysis of PSAM
was presented by Cavers in [6], who examined the optimum (in
the mean-square error sense) Wiener interpolator performance.
Due to the complexity of the interpolator, and its dependence
on a variety of system parameters, such as operating signal-
to-ratio and the autocorrelation of the channel fading process,
a number of alternative interpolation approaches have been
investigated [7], [8] among others. An extension of PSAM to
MIMO systems was discussed in [9].

The problem of timing acquisition in space-time coded
modems was first addressed in [9], where the receiver obtained
timing information by maximizing the oversampled approxi-
mated log-likelihood function (LLF), derived from orthogonal
training sequences. The authors of [10] and [11] have shown
that the algorithm in [9] is highly sensitive to the oversampling
ratio Q, and have proposed a modification which significantly
reduces the oversampling required to achieve a given MSE.

The work outlined above deals with the problem of initial
timing acquisition by means of a known preamble. In this
paper we focus on the task of tracking the timing in multiple
antenna systems once initial acquisition has been performed.
Recently, closed form expressions for the S-curve and estima-
tion variance have derived for a timing error detector (TED)
operating on OSTBC maximum likelihood (ML) detection
variables [12] [13]. It was shown that the S-curve possesses
a very attractive property of being independent of the channel
state, and thus its performance is robust to the effects of fading.

This paper evaluates the receiver’s timing tracking perfor-
mance in conjunction with PSAM-based channel estimation.
We examine the performance for a Wiener and a more realistic
raised cosine (RC) interpolation filters. Effects of the delay
inherent to PSAM systems are studied, and we show there
exists an optimum value for the number of pilot interpolants
depending on the rate of timing drift. Symbol error rate
performance in a QPSK system is presented as well as the
performance as a function of the timing drift.

The remainder of the paper is organized as follows. System
overview is given in Section II. Channel estimation and timing
epoch tracking for OSTBC are presented in Sections III and
IV, respectively. Simulation results are presented in Section V
where the error rate performance is evaluated in Section V-A
and the tracking capabilities as a function of timing bandwidth
are investigated in Section V-C. We conclude the paper with
a summary of the findings in Section VI.

II. SYSTEM OVERVIEW

We consider a communication system comprising of nT

transmit and nR receive antennas employing orthogonal space-
time block coding. The transmitter encodes Ns M-PSK in-
formation symbols and transmits them over nT antennas in
Nc time slots, resulting in a code rate of R = Ns/Nc.



We denote the lth nT × Nc code block by Xl and its ik
entry by xi(lNc + k). Note that l is the code block index,
k = 0, . . . , Nc − 1 is the time slot index within the block
and i = 1, . . . , nT is the transmit antenna index. Let the mth
information symbol used to encode block Xl be given by al

m,
where m = 0, . . . , Ns − 1. Then, Xl is given by the linear
combination of al

m and their conjugates [14]

Xl =
Ns−1∑
m=0

<{al
m}Am + i={al

m}Bm, (1)

where the operators <{·} and ={·} return the real and imag-
inary parts of their arguments, and Am and Bm are code
matrices of dimension nT×Nc. For nT = 2, that is the scheme
proposed by Alamouti [1], Am and Bm are given by [14]

A0 =
[

1 0
0 1

]
,A1 =

[
0 −1
1 0

]
(2)

and

B0 =
[

1 0
0 −1

]
,B1 =

[
0 1
1 0

]
. (3)

Following the encoding, data on each transmit antenna is
passed through a pulse shaping filter. The pulse shaping is
split between the transmitter and receiver, each employing a
root raised cosine (RRC) filter denoted by g̃(t). The combined
raised cosine pulse is denoted by g(t) = g̃(t) ∗ g̃(t).

We assume a frequency-flat Rayleigh fading channel mod-
eled by a matrix H of dimension nR × nT . We denote each
row of H by a vector hj = [h1j , h2j , . . . , hnT j ]. Entries hij

correspond to the state of the channel from ith transmit to
jth receive antenna and are assumed to be independent and
identically distributed (iid) for all i and j. U-shaped power
spectrum of isotropic scattering is assumed, and thus the
autocorrelation of hij (for all i and j) is given by [15]

Rh(ξ) = σ2
hJ0(2πfDξ), (4)

where σ2
h is the variance of the random process, and J0(x)

denotes the Bessel function of the first kind of order zero. The
quantity fD in (4) denotes the maximum Doppler frequency.

The received signal at antenna j is given by

rj(t) =
nT∑
i=1

hij(t)
∞∑

m=−∞
xi(m)g̃(t −mT ) + η̄j(t), (5)

where η̄j(t) is a zero mean complex Gaussian noise with
variance σ2

η̄ = N0/2 per signal dimension. After matched
filtering, rj(t) is sampled at time instants tn = nT +ε, where ε
is the unknown residual timing offset after timing correction,
assumed to be equal at all branches. Assuming the channel
fading is sufficiently slow such that hij(tn) = hij(nT ) ,
hij(n), the resulting samples are given by

yj(n) =
nT∑
i=1

hij(n)
∞∑

m=−∞
xi(m)g(nT −mT + ε) + ηj(n),

(6)

where ηj(n) is used to denote the colored noise samples after
match filtering. It is easily shown [9] that the noise samples
are uncorrelated if sampled at the symbol rate.

Equation (6) can also be expressed as

yj(n) = g(ε)
nT∑
i=1

hij(n)xi(n) + vj(n) + ηj(n), (7)

where vj(n) is used to denote the intersymbol interference
(ISI), given by

vj(n) =
nT∑
i=1

hij(n)
∑
m6=n

xi(n)g(nT −mT + ε). (8)

Denoting the estimate of H by Ĥ, the ML detection
variables for each information symbol m within a block,
m = 0, . . . , Ns − 1, are given by [14]

s̃m =
1∥∥∥Ĥ∥∥∥2

[
<{tr(YHĤAm)} − i={tr(YHĤBm)}

]
,

(9)
where tr denotes the trace operator,

∥∥∥Ĥ∥∥∥ is the Frobenius

norm of Ĥ and Y is an nR ×Nc matrix with entry jn given
by yj(n). The projection of s̃m onto the signal constellation
then forms the detected information symbols denoted by âm.

III. CHANNEL ESTIMATION

The receiver estimates the channel state information using
periodically transmitted orthogonal pilot sequences. For this
purpose, the data is organized into frames of Lf symbols,
made up of Lp pilot symbols followed by Ld data symbols.
The number of OSTBC blocks in a frame is denoted by Nb =
Ld/Nc. The resulting average data symbol energy is thus Ēs =
EsLf/Ld, where Es is the actual symbol energy.

Let Xp denote nT ×Lp pilot matrix, whose rows correspond
to the pilot sequences transmitted by each antenna and denoted
by pi. In order to estimate an nT × nR MIMO channel,
the minimum length of each pilot sequence must equal to or
greater than the number of transmit antennas [9]. 1

Consider the received samples corresponding to the kth pilot
sequence at receive antenna j. For notational convenience we
let αij(k) denote the channel state for the kth pilot slot, and
we assume that the channel remains constant for the duration
of the pilot block, αij(k) , hij((k − 1)Lf + 1) = hij((k −
1)Lf + Lp). Using (7) it can be shown that the kth received
pilot sequence is given by

yj(k) = g(ε)αj(k)Xp + zj(k), (10)

where yj(k) = [yj((k − 1)Lf + 1) . . . yj((k − 1)Lf + Lp)],
αj(k) = [α1j(k) . . . αnT j(k)] and zj(k) is a vector of
equivalent additive noise and ISI samples given by zj(k) =
vj(k)+ηj(k) for k = (k−1)Lf +1 . . . (k−1)Lf +Lp. Since

1Note that for OSTBC with nT > 2, Nc > nT , and thus the pilot and
data blocks are of different durations.



the pilot sequences are orthogonal, the minimum mean square
error estimate of αj(k) is given by [9]

α̂j(k) =
yj(n)XH

p

g(ε)‖p‖2
(11)

and the estimation error for each diversity branch is given by

eij(k) = α̂ij(k) − αij(k)

=
zj(k)pi

H

g(ε)‖p‖2
. (12)

While the residual timing error ε is unknown, it is assumed
that ε << 1 and the MMSE estimate of channel state for pilot
slots is obtained by approximating g(ε) ≈ 1 in (11).

The channel estimate of the data portion of the frame can be
obtained via pilot interpolation provided that the normalized
sampling rate of the pilots satisfies the Nyquist condition

f̄ ,
fs,p

2fD
≥ 1, (13)

where fs,p = 1/(Lf ) is the pilot sampling rate and fD is the
maximum Doppler frequency.

The channel estimate for the nth data symbol, −bLd/2c <
n < bLd/2c, is obtained by interpolating K nearest pilot
channel estimates αij(k), −bK/2c < k < bK/2c, that is

ĥij(n) = w(n)Hα̂ij , (14)

where w(n) is the column vector of K interpolation coef-
ficients w(n, k) and α̂ij is the vector of the pilot channel
estimates. It should be noted that the interpolation coefficients
w(n) are different for each position within the frame.

The optimum coefficients, that is, those which minimize
the mean square estimation error between the channel hij(n)
and the estimate ĥij(n), are given by the well known Wiener
equation

w(n) = R−1
α a(n), (15)

where Rα is the autocorrelation matrix

Rα = E
{
αijα

H
ij

}
, (16)

and a(n) is the covariance vector given by

a(n) = E
{
h∗ijαij

}
. (17)

The (i, j)th element of Rα can be obtained from (4), and are
given by [6]

Rα,ij = σ2
hJ0(2πfD(i− j)LfT ) + σ2

eδij , (18)

where δij denotes the Kronecker delta function. Similarly, the
ith component of a(n) is given by [6]

ai(n) = σ2
hJ0(2πfD(iLf − n)T ). (19)

It must be noted, that while the Wiener interpolator is
optimal in the MMSE sense, it requires the knowledge of the
channel statistics, the operating SNR as well as the Doppler
frequency and is thus not suitable for practical applications.
For this reason, we also consider an interpolation using a
Raised Cosine filter, a use of which was examined by [7].

Among other findings, the authors in [7] determine by simu-
lation the optimum value for the rolloff factor βI as a function
of the normalized pilot sampling rate f̄ , a result used here in
the implementation of the RC PSAM interpolation.

IV. TIMING EPOCH TRACKING

We now describe a method for timing error tracking in
nT = 2 OSTBC systems with an arbitrary number of receive
antennas. The estimation of the timing epoch is done by means
of a TED similar in form to the Mueller and Muller detector
(MMD) [16], but operating on the ML detection variables
given by (9). Detailed derivations of the S-curve and the
estimation variance are given in [12] and [13]. In this section
we summarize the properties of the TED and outline a method
of timing correction using its output.

A. Timing Error Detector

1) S-curve: Consider an estimate of the timing error based
on the lth OSTBC code block, i.e.,

ε̂ = a0s̃1 − a1s̃0, (20)

where ai, i = 0, . . . Ns − 1, denotes the data symbols used to
encode block l, and s̃m, are the ML decision metrics given
by (9). For notational compactness, we have not included the
block index l in the variable in (20), with the understanding
that all quantities refer to the lth code block.

The S-curve is derived by evaluating the expectation of ε̂
over the information symbols am and noise. Using (6) and (9),
one can show that the expectation E {ε̂} is given by [12]

E {ε̂} = g
(ε)
−1 − g

(ε)
1 . (21)

where g
(ε)
n denotes the samples of the overall pulse shape with

an timing error ε,

g(ε)
n , g(nT + ε).

From (21) we see that the detector uses the difference in
threshold crossings to estimate the timing offset ε. The ex-
pression obtained in (21) is the same as that derived in [16]
for PAM signals. It is important to note that in the presence of
fading, which was not considered by [16], the detector given
by (20) yields a reliable estimate regardless of the state of the
channel. This is a key property making the detector very robust
in poor channel conditions. The above result holds true in the
sense of the statistical average over the data. In practice the
timing loop approximates the statistical average with a time
average over the data symbols. Note that the derivation of (21)
in [12] does not take into account channel estimation errors.

2) Estimation Variance: Another key characteristic of the
TED is its estimation variance, given by

σ2
ε̂ = E {ε̂ε̂∗} − E {ε̂}2

. (22)

As with the evaluation of the the S-curve, the expectation
in (22) is taken over data am and the noise. The derivation of



the variance is rather involved, with the details presented in
[13]. Defining

χmn ,
nR∑
j=1

hmjh
∗
nj , m, n = 1, 2 (23)

the solution can be shown to be given by [13]

σ2
ε̂ =

2
‖H‖4

{(
χ2

11 + χ2
22 + 2 |χ12|2

)∑
n

g(ε)
n

2

+ 2
(
χ11χ22 − |χ12|2

)(∑
n

g
(ε)
2n

2
−
∑

n

g
(ε)
2n+1g

(ε)
2n−1

)

−
(
χ2

11 + χ2
22

)(
g

(ε)
0

2
+ g

(ε)
1 g

(ε)
−1

)
− χ11χ22

(
2g

(ε)
0

2
− g

(ε)
1

2
− g

(ε)
−1

2
)

+ ρχ2
12

(
g

(ε)
1 + g

(ε)
−1

)2

+ (χ11 + χ22)σ2
η′

}
−

(
g

(ε)
−1 − g

(ε)
1

)2

, (24)

where ρ , E
{
a2

m

}
. It can be shown that

ρ =
{

1, BPSK
0, MPSK,M > 2 . (25)

Finally, σ2
η′ in (24) is given by

σ2
η′ =

{
N0/2, BPSK
N0, MPSK,M > 2 . (26)

In the case of BPSK, the variance of the TED contains noise
of one signal dimension only. This is because when evaluating
the OSTBC decision metrics (9), the imaginary components
are disregarded, and the noise associated with them does not
propagate to the TED.

Unlike the expression for the S-curve, (24) is dependent
on the channel state. It is not possible to obtain an analytical
expression for the expectation over the fading, mainly due to
the denominator involving the channel state. Averaging of (24)
over the fading must thus be carried out via simulation, as was
done in [13].

B. Timing Error Correction

Due to pilot interpolation, channel estimates are generated
on a frame-by-frame basis. Specifically, after pilot for frame
k′ has been received, channel state information for frame
k = k′ − dK/2e are available. The receiver then decodes all
Nb OSTBC blocks in frame k, and thus is able to obtain the
corresponding TED estimates via (20). These TED outputs
are used to correct the timing phase for frame k + 1. Thus,
as a result of pilot interpolation, the timing estimation and
correction are delayed by dK/2e frames.

Consider data block l, transmitted as part of frame k. Let
the residual timing error for that block be expressed as

εl = τl − τ̂k,

where τl is the timing delay relative to the receiver time axis
and τ̂k is the timing correction introduced for frame k. To
minimize the effects of noise, the timing error estimates ε̂l for
each data block in frame k are passed through a first-order
IIR filter. We denote the filtered error estimate by ε̂′l, where

ε̂′l = αε̂′l−1 + (1− α)ε̂l. (27)

The filter output for l = kNb, that is the last filter output
in frame k, is used to compute the timing correction for the
next frame. If ε̂′l exceeds some threshold value εth, the timing
correction τ̂l is adjusted by a fraction of the symbol interval
T/Q, depending on the polarity of the error estimate,

τ̂k+1 =
{

τ̂k + T/Q, ε̂′k > εth

τ̂k − T/Q, ε̂′k < −εth
. (28)

V. SIMULATION RESULTS

We present simulation results evaluating the performance
of the TED in conjunction with PSAM channel estimation as
described by Sections III and IV. We consider symbol error
rate for Wiener and RC interpolation, and study the effects of
the delay associated with large K. Finally, the range of timing
drift bandwidth tracked by the receiver is determined.

The data was organized in frames of Lp = 2 pilot slots,
followed by 4 data code blocks. The resulting pilot spacing
of Lf = 10 is adequate for estimation of channel with a
normalized Doppler frequency well in excess of fDT = 0.01
considered here. The data symbols were encoded using the
Alamouti code matrices given in (1), (2) and (3), before being
passed through an RRC pulse shaping filter with a rolloff
factor of β = 0.35. We consider frequency-flat Rayleigh fad-
ing, independent on each branch, with a normalized Doppler
frequency fDT = 0.01. The data was corrupted by additive
white Gaussian noise.

At the receiver, the signal on each branch was matched
filtered and sampled. We assume that the coarse timing ac-
quisition has been performed, which is typically done using
a known training sequence. The simulations were carried out
using a resolution of T/8, that is filtering at both the trans-
mitter and the receiver was done using waveforms sampled
at that rate. The timing drift was simulated by perturbing
the sampling phase τl. The interval between timing slips,
measured in symbol intervals and denoted by Nτ , was modeled
by a Gaussian random variable, with a mean of N̄τ and with a
variance of σ2

Nτ
. To ensure proportional distribution of timing

slip intervals for all N̄τ , σ2
Nτ

was set to 10% of N̄τ . The
drift direction was random and equiprobable, while its size
was fixed to T/8. The resulting mean timing error bandwidth,
normalized to the symbol duration T , is given by

B̄τT =
T/8
N̄τT

=
1

8N̄τ
.

Channel estimation was performed independently on each
receiver branch by interpolation of channel states from K
pilots. We consider both Wiener and RC filters. The Wiener
filter coefficients were optimized for each position within the
frame, the operating Ēs/N0 as well as the Doppler frequency.



The Raised Cosine filter rolloff was set to βI = 0.9, which,
based on the results in [7], is suitable for normalized pilot
sampling rate of f̄ = 1/(LffD) = 10. As described in Section
IV-B, interpolating K pilot channel estimates returns channel
state information delayed by dK/2e frames. The data was
decoded according to (9).

Since the focus of the investigation is the tracking perfor-
mance, the data symbols were unknown to the receiver and
the timing error estimation was performed using a decision-
directed (DD) TED given by

ε̂DD = â0s̃1 − â1s̃0, (29)

where â0 and â1 are the data decisions. The TED estimate
was filtered according to (27) with α = 0.9, with the output
determining the timing correction as described by (28). The
timing correction threshold was set to εth = 0.25.

A. SER Performance

We now evaluate the SER performance of 1-, 2- and 4-
antenna receivers. Figures 1 and 2 show QPSK SER plots
for Wiener and RC pilot interpolation, respectively. The mean
timing drift bandwidth was set to B̄τT = 1×10−4. In addition,
we provide three reference curves: ideal timing and channel
estimation, ideal timing with PSAM channel estimation and
finally, timing drift with ideal channel knowledge. Note that
in the two cases of perfect channel knowledge, no pilot
interpolation was performed and thus no delay was introduced
in decoding the data and obtaining the timing information.
Results corresponding to PSAM receivers take into account a
0.96 dB SNR overhead due to pilot insertion.

avg Es/N0

0 5 10 15 20 25 30

S
E

R

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0
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Wiener PSAM, ideal timing
Wiener PSAM, timing drift

nR=1

nR=2
nR=4

Fig. 1. QPSK SER (Wiener PSAM, K = 9, Ld = 8, fDT = 0.01).

The results demonstrate that the receiver is able to track the
timing variation with a very small performance drop resulting
from the timing correction. By observing the reference curves,
it is clear that for most part, the performance loss is due
to channel estimation. The relatively low value of the error
threshold εth results a very responsive loop, which ensures
little degradation in SER. For nR = 2, 4 where the operating
SNR is very low, we observe the development of an error floor

avg Es/N0

0 5 10 15 20 25 30

S
E

R

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

ideal CSI, ideal timing
ideal CSI, timing drift
RC PSAM, ideal timing
RC PSAM, timing drift

nR=1

nR=2
nR=4

Fig. 2. QPSK SER (RC PSAM, K = 9, Ld = 8, fDT = 0.01).

due to timing estimation. This is most likely caused by the fact
that the errors from noisy pilot channel state information (CSI)
estimates propagate to the TED estimation. One also notices
poor performance at very low SNR, especially for nR = 1.
This is a result of noisy timing error estimates and can easily
be remedied by increasing the threshold value εth in low SNR
region. The performance for RC filtering shows similar trends,
with additional performance drop of 1 − 2 dB resulting from
the non-optimum interpolation filter. We note that the only
information used to compute the RC interpolation coefficients
was the Doppler frequency used to select the rolloff factor.

B. Effects of Interpolation Size

As described in previous sections, interpolation introduces
a delay in data decoding, which in turn results in delayed
timing error information. This suggests a trade-off between
poor channel estimation for small K, and long delay for large
K. This trade-off is the focus of this section.

Figure 3 shows the SER as a function of K for nR = 2
QPSK system at Ēs/N0 = 12dB. The channel estimation
was performed using a Wiener filter with Lf =10. The figure
includes results for varying timing bandwidth ranging from
BτT = 1× 10−4 to BτT = 6× 10−4. As a reference, a plot
corresponding to a system with perfect timing is included.

The ideal timing plot shows a steady performance gain with
increasing K until approximately K = 11. This agrees with
results previously reported in [6]. As anticipated, in a system
with timing tracking, the delay associated with large K results
in an increase in SER. This effect is more pronounced when
the timing drift is faster, as shown in plots for BτT = 4×10−4

and BτT = 6 × 10−4. While K = 11 or higher is optimum
for smaller BτT , for faster timing variation a value of K = 9
results in better performance.

C. Performance as a Function of Timing Bandwidth

Finally, we study the performance as a function of timing
drift. Figure 4 shows SER as a function of BτT for a nR = 2
QPSK system at Ēs/N0 = 12dB and Ēs/N0 = 16dB. The
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Fig. 3. SER vs number of interpolated pilots K (QPSK, nR = 2, Wiener
PSAM, Ld = 8, Ēs/N0 = 12dB).

channel estimation was done via Wiener PSAM with K = 9
and pilot spacing of Lf = 10. Performance for a system with
perfect channel knowledge is included for comparison, which
correspond to a receiver with not decoding delay. In addition,
in order to evaluate the effects of channel estimation errors
separately from the effects of the delay, Figure 4 also shows
results for ideal CSI where the timing information was delayed
by the same amount as in the PSAM system.

BτT
1e-5 1e-4 1e-3

S
E

R
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1e-2

1e-1
12 dB ideal CSI 
12 dB ideal CSI w/ delay 
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8 dB ideal CSI w/ delay 
8 dB PSAM 

Fig. 4. SER vs Bτ T (QPSK, nR = 2).

In the case of perfect channel knowledge and no delay,
the system is able to track timing in excess of BτT =
2 × 10−3. We see that this range decreases significantly with
the introduction of the delay. The effect of channel estimation
error results in further reduction in stable range. This effect is
more pronounced for higher Ēs/N0, and will manifest itself
in an error floor in systems with faster timing drift.

We should point out that the tracking range can be increased
by adjusting a number of system parameters. As shown by
results of Section V-B, a lower K will improve the SER for
faster timing drift. Also, for reasonably high SNR, the error
threshold εth and the loop filter constant α can be decreased.

This will result in a a more responsive timing loop, improving
overall system performance.

VI. CONCLUSION

We have evaluated the performance of a robust timing
error detector in tandem with PSAM-based channel estimation
in frequency-flat Rayleigh fading MIMO system. The SER
results show that the performance drop in comparison to ideal
timing and channel knowledge case is mainly due to the chan-
nel estimation. The timing tracking produces no degradation
in most of the SNR region for moderate values of timing
bandwidth. We have demonstrated that the delay inherent
to PSAM interpolation decreases the range of timing drift
bandwidth successfully tracked by the receiver. An optimum
value for the number of pilot interpolants was determined.
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